Bilinear Harmonic Function

u(x) is harmonic in \Omega\subset\mathbb{R}^n, and suppose B_c(x_0)\subset\subset\Omega. If a\le b\le c, ac=b^2, then

\displaystyle \int_{|\omega|=1}u(x_0+a\omega)u(x_0+c\omega)\mathrm{d}\omega=\int_{|\omega|=1}u^2(x_0+b\omega)\mathrm{d}\omega


I like this theorem, it is beautiful  and concise. The proof was kind of trivial if apply Poisson Kernel bravely. Let’s make it more general.

Set S=\{|\omega|=1\}, thus define \xi(\rho_1,\rho_2)=\int_{S}\phi_1(\rho_1 x)\phi_2(\rho_2 x), if we are given that \alpha_1\alpha_2=\beta_1\beta_2, then we are going to prove:


consider unit vector a,b, by Poisson Integral,

\phi(\alpha a)=\int_{S_b}K(\alpha a,\beta b)\phi(\beta b),


\displaystyle K(\alpha a,\beta b)=\frac{\beta^{n-2}(\beta^2-\alpha^2)}{C_n(\alpha^2+\beta^2-2\alpha\beta\cos(a,b))^{n/2}},

since \alpha_1\alpha_2=\beta_1\beta_2, thus we assume \kappa=\frac{\alpha_1}{\beta_2}=\frac{\beta_1}{\alpha_2}, we know that K is homogeneous, hence

K(\alpha_1 a,\beta_1 b)=K(\kappa\beta_2 a,\kappa\alpha_2 b)=K(\beta_2 a,\alpha_2 b).

\xi(\alpha_1,\alpha_2)=\int_{S_a}\int_{S_b}K(\alpha_1 a,\beta_1 b)\phi_1(\beta_1 b)\phi_2(\alpha_2 a)

which is

\xi(\alpha_1,\alpha_2)=\int_{S_b}\int_{S_a}K(\beta_2 a,\alpha_2 b)\phi_2(\alpha_2 a)\phi_1(\beta_1 b)

The inner integral is \phi_2(\beta_2 a).




One thought on “Bilinear Harmonic Function

  1. It seems that this conclusion cannot be generalized. because the Poisson Kernel only involves two surfaces, not N surfaces.


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s