Solve a problem

Statement of the problem:

f ' is Lipchitz, then

|\displaystyle\sum_{j=1}^n\frac{f_j+f_{j+1}}{2}-\int_0^1 f(x)\mathrm{d}x|\le CL\Delta x^2

for some constant C.

Proof:

We first state a lemma here.

f(x)-f(y)=f'(x)(x-y)+\displaystyle\frac{f'(\zeta)-f'(y)}{2(\zeta-y)}(x-y)^2,

for some \zeta\in(x,y).

Because we do not know whether f'' exists.

Proof for lemma:

Without loss of generality, we assume y=0.

Then we have to prove:

f(x)-f(0)=f'(0)x+\displaystyle\frac{f'(\zeta)-f'(0)}{2(\zeta-0)}x^2

Set g=f(x)-f'(0)x, then we have to prove:

g(x)-g(0)=\displaystyle\frac{g'(\zeta)}{2\zeta}x^2,

which is equivalent to:

\displaystyle\frac{g(x)-g(0)}{x^2}=\frac{g'(\zeta)}{2\zeta},

use the formula that, there exists a \phi, s.t.

\displaystyle\frac{F(x)-F(y)}{G(x)-G(y)}=\frac{F'(\phi)}{G'(\phi)}.

The lemma is proved.

Let’s prove the original problem. By the lemma,

f(x)-f_j=f'_j(x-j\Delta x)+\displaystyle\frac{f'(\zeta)-f'_j}{2(\zeta-j\Delta x)}(x-j\Delta x)^2,

f_{j+1}-f_j=f'_j\Delta x+\displaystyle\frac{f'(\eta)-f'_j}{2(\eta-j\Delta x)}\Delta x^2,

\displaystyle\int_{j\Delta x}^{(j+1)\Delta x}(f(x)-\displaystyle\frac{f_j+f_{j+1}}{2})\mathrm{d}x\le\int \{f'_j[x-(j+\frac{1}{2})\Delta x]+\frac{1}{2}L(x-j\Delta x)^2+\frac{1}{2}L\Delta x^2\}\mathrm{d}x

The first term is zero!

Then on every interval, the difference is of order three!

\Box

Advertisements

DOODLE SOMETH

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s